Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 285(3): e21685, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466324

RESUMO

The musculature is one of the best studied organ systems in brachiopods, being approachable not only by dissecting recent species of brachiopods, but also by exploring muscle scars in fossil material. In the present study, the muscular anatomy of Novocrania anomala is studied using 3D reconstructions based on microcomputed tomography. Muscles of N. anomala may be subdivided into two groups: those related to movements of the lophophore, and those connected to movements of shell valves. Muscles, their morphology and possible functions, such as brachial protractors, elevators, and retractors, as well as anterior adductors, are described and discussed. We also provide the discussion of craniid muscle terminology, consider the valve-opening mechanism. The investigation of muscle scars on dorsal valves supports the conclusion that the shape of muscle scars should be used for description and distinction of recent and extinct species only when visible distinctness cannot be explained by substrate differences. This study, which is aimed at improving our understanding the anatomy and functioning of muscles in craniids, will be useful not only for zoologists, but also for paleontologists.


Assuntos
Cicatriz , Sistema Musculoesquelético , Animais , Imageamento Tridimensional , Microtomografia por Raio-X , Músculos/diagnóstico por imagem , Invertebrados
2.
J Exp Zool B Mol Dev Evol ; 340(3): 245-258, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35662417

RESUMO

Since ctenostomes are traditionally regarded as an ancestral clade to some other bryozoan groups, the study of additional species may help to clarify questions on bryozoan evolution and phylogeny. One of these questions is the bryozoan lophophore evolution: whether it occurred through simplification or complication. The morphology and innervation of the ctenostome Flustrellidra hispida (Fabricius, 1780) lophophore have been studied with electron microscopy and immunocytochemistry with confocal laser scanning microscopy. Lophophore nervous system of F. hispida consists of several main nerve elements: cerebral ganglion, circumoral nerve ring, and the outer nerve ring. Serotonin-like immunoreactive perikarya, which connect with the circumoral nerve ring, bear the cilium that directs to the abfrontal side of the lophophore and extends between tentacle bases. The circumoral nerve ring gives rise to the intertentacular and frontal tentacle nerves. The outer nerve ring gives rise to the abfrontal neurites, which connect to the outer groups of perikarya and contribute to the formation of the abfrontal tentacle nerve. The outer nerve ring has been described before in other bryozoans, but it never contributes to the innervation of tentacles. The presence of the outer nerve ring participating in the innervation of tentacles makes the F. hispida lophophore nervous system particularly similar to the lophophore nervous system of phoronids. This similarity allows to suggest that organization of the F. hispida lophophore nervous system may reflect the ancestral state for all bryozoans. The possible scenario of evolutionary transformation of the lophophore nervous system within bryozoans is suggested.


Assuntos
Briozoários , Animais , Briozoários/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Filogenia , Serotonina , Microscopia Confocal
3.
Sci Rep ; 11(1): 16192, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376709

RESUMO

The lophophore is a tentacle organ unique to the lophophorates. Recent research has revealed that the organization of the nervous and muscular systems of the lophophore is similar in phoronids, brachiopods, and bryozoans. At the same time, the evolution of the lophophore in certain lophophorates is still being debated. Innervation of the adult lophophore has been studied by immunocytochemistry and confocal laser scanning microscopy for only two brachiopod species belonging to two subphyla: Linguliformea and Rhynchonelliformea. Species from both groups have the spirolophe, which is the most common type of the lophophore among brachiopods. In this study, we used transmission electron microscopy, immunocytochemistry, and confocal laser scanning microscopy to describe the innervation of the most complex lophophore (the plectolophe) of the rhynchonelliform species Coptothyris grayi. The C. grayi lophophore (the plectolophe) is innervated by three brachial nerves: the main, second accessory, and lower. Thus, the plectolophe lacks the accessory brachial nerve, which is typically present in other studied brachiopods. All C. grayi brachial nerves contain two types of perikarya. Because the accessory nerve is absent, the cross nerves, which pass into the connective tissue, have a complex morphology: each nerve consists of two ascending and one descending branches. The outer and inner tentacles are innervated by several groups of neurite bundles: one frontal, two lateral, two abfrontal, and two latero-abfrontal (the latter is present in only the outer tentacles). Tentacle nerves originate from the second accessory and lower brachial nerves. The inner and outer tentacles are also innervated by numerous peritoneal neurites, which exhibit acetylated alpha-tubulin-like immunoreactivity. The nervous system of the lophophore of C. grayi manifests several evolutionary trends. On the one hand, it has undergone simplification, i.e., the absence of the accessory brachial nerve, which is apparently correlated with a reduction in the complexity of the lophophore's musculature. On the other hand, C. grayi has a prominent second accessory nerve, which contains large groups of frontal perikarya, and also has additional nerves extending from the both ganglia to the medial arm; these features are consistent with the complex morphology of the C. grayi plectolophe. In brachiopods, the evolution of the lophophore nervous system apparently involved two main modifications. The first modification was the appearance and further strengthening of the second accessory brachial nerve, which apparently arose because of the formation of a double row of tentacles instead of the single row of the brachiopod ancestor. The second modification was the partial or complete reduction of some brachial nerves, which was correlated with the reduced complexity of the lophophore musculature and the appearance of skeletal structures that support the lophophore.


Assuntos
Evolução Biológica , Invertebrados/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso/fisiopatologia , Organogênese , Animais , Invertebrados/anatomia & histologia , Sistema Nervoso/anatomia & histologia
4.
Zoology (Jena) ; 144: 125884, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310679

RESUMO

Brachiopoda is a relict phylum of marine benthic animals that have not been adequately studied with modern microscopy methods. Microscopic study may provide useful information on the evolution of the brachiopod body plan and brachiopod phylogeny. Understanding the organisation of the coelomic system is important because of its role in body form and compartmentalisation. Most brachiopods are considered to have a bipartite coelomic system; the only known exception is Lingulida, which have a tripartite coelomic system. In the present study, we provide the first complete 3D reconstruction of the coelomic system in the craniide brachiopod Novocrania anomala (Müller, 1776). Its coelomic system consists of the following five main parts, which are entirely separated from each other: 1) a pair of large brachial canals; 2) a complex system of paired small brachial canals and a perioesophageal coelom; 3) frontal coelomic chambers; 4) a main trunk coelom, which includes several semi-detached muscular chambers and mantle sinuses; and 5) a pair of posterior adductors chambers. These results indicate that the coelomic system of N. anomala (and perhaps of other craniides) is complex and cannot be considered to be bipartite or tripartite. The frontmost part of the coelomic system is represented by a pair of frontal chambers, which are considered to be a part of the lophophore but which are derived from dorsal mantle fold extensions and thus may be a part of the trunk coelomic system. A number of similarities were discovered between craniiformean and rhynchonelliformean coelomic systems, including the prominent dorsal projections of the large brachial canals and the morphological features of the perioesophageal coelom. The complex subdivision of the N. anomala trunk coelom is explained by the location and function of muscles, and by the location of several mesenteries.


Assuntos
Invertebrados/anatomia & histologia , Animais
5.
Zoology (Jena) ; 143: 125832, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971479

RESUMO

The structure of the lophophore nervous system may help clarify the status of the clade Lophophorata, whose monophyly is debated. In the current study, antibody labeling and confocal laser scanning microscopy revealed previously undescribed main nerve elements in the lophophore in adult phoronids: Phoronis australis and Phoronopsis harmeri. In both species, the nervous system includes a dorsal ganglion, a tentacle nerve ring, an inner nerve ring, intertentacular groups of perikarya, and tentacle nerves. The dorsal ganglion and tentacle nerve ring contain many serotonin-like immunoreactive perikarya of different sizes. The inner nerve ring is described for the first time in adult phoronids with complex lophophore. It contains a thin bundle of serotonin-like immunoreactive neurites. The tentacles possess abfrontal, frontal, and laterofrontal nerves. The abfrontal nerves originate from the tentacle nerve ring; the frontal tentacle nerves extend from the inner nerve ring in P. harmeri and from the intertentacular frontal nerves in P. australis. The intertentacular groups of perikarya are found in phoronids for the first time. These small nerve centers connect with neither the tentacle nerve ring nor the inner nerve ring, giving rise to the laterofrontal tentacle nerves. The discovery of the inner nerve ring in adult phoronids makes the architecture of the lophophore nervous system similar in all lophophorates and thereby supports the monophyly of this group. The presence of intertentacular nerves, perikarya, and groups of perikarya is a typical feature of the nervous system in lophophorate presumably coordinating movements of the tentacles and thereby increasing the efficiency of lophophore functioning.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Animais , Microscopia Confocal , Sistema Nervoso/ultraestrutura
6.
Sci Rep ; 10(1): 9295, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518307

RESUMO

The organization and development of the nervous system are traditionally used for phylogenetic analysis and may be useful for clarification of evolution and phylogeny of some poor studied groups. One of these groups is brachiopods: most data on their nervous system organization were obtained in 19th century. In this research, antibody staining and confocal laser scanning microscopy were used to study the nervous system of early ontogenetic stages of the brachiopod Novocrania anomala. Although N. anomala adults are thought to lack a supraenteric ganglion, a large supraenteric ganglion exists in N. anomala juveniles with either a trocholophe or a schizolophe. During ontogenesis, the supraenteric ganglion in the juvenile changes its shape: the commissure between the two lobes of the ganglion extends. This commissure possibly gives rise to the main brachial nerve in adults. The supraenteric ganglion gives rise to the cross (transversal) nerves that extend to the accessory brachial nerve, which gives rise to the tentacular nerves. In juveniles with a trocholophe, the accessory brachial nerve gives rise to the frontal and intertentacular nerves of tentacles that form a single row. When the trocholophe transforms into the schizolophe, the second row of tentacles appears and the innervation of the tentacles changes. The intertentacular nerves disappear and the second accessory nerve forms and gives rise to the laterofrontal tentacular nerves of the inner and outer tentacles and to the abfrontal nerves of the inner tentacles. The so-called subenteric ganglion, which was described as a ganglion in N. anomala adults, is represented by a large circumvisceral nerve in N. anomala juveniles.The results suggest that 'phoronid-like' non-specialized tentacles may be regarded as the ancestral type of tentacles for brachiopods and probably for all lophophorates. The presence of intertentacular nerves is the ancestral feature of all lophophorates. The transformation of the juvenile supraenteric ganglion into the main brachial nerve of N. anomala adults suggests that research is needed on the development and organization of the supraenteric ganglion and the main brachial nerve in other brachiopods, whose adults have a prominent supraenteric ganglion.


Assuntos
Plexo Braquial/embriologia , Invertebrados/anatomia & histologia , Invertebrados/embriologia , Tecido Nervoso/embriologia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Evolução Biológica , Invertebrados/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos
7.
Front Zool ; 16: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962810

RESUMO

BACKGROUND: Entoprocta affinities within Lophotrochozoa remain unclear. In different studies, entoprocts are considered to be related to different groups, including Cycliophora, Bryozoa, Annelida, and Mollusca. The use of modern methods to study the neuroanatomy of Entoprocta should provide new information that may be useful for phylogenetic analysis. RESULTS: The anatomy of the nervous system in the colonial Barentsia discreta was studied using immunocytochemistry and transmission electron microscopy. The ganglion gives rise to several main nerves: paired lateral, aboral, and arcuate nerves, and three pairs of tentacular cords that branch out into tentacular nerves. The serotonergic nervous system includes paired esophageal perikarya and two large peripheral perikarya, each with a complex net of neurites. Each tentacle is innervated by one abfrontal and two laterofrontal neurite bundles. Sensory cells occur regularly along the abfrontal side of each tentacle. Star-like nerve cells are scattered in the epidermis of the calyx. The stalk is innervated by paired stalk nerves. CONCLUSIONS: The neuroanatomy of the colonial Barentsia discreta is generally similar to that of solitary entoprocts but differs in the anatomy and ultrastructure of the ganglion, the number of neurite bundles in the calyx, and the distribution of serotonin in the nerve elements. A comparison of the organization of the nervous system in the Entoprocta and Bryozoa reveals many differences in tentacle innervations, which may indicate that these groups may not be closely related. Our results can not support with any certainty the homology of nervous system elements in adult entoprocts and adult "basal mollusks".

8.
Zoology (Jena) ; 133: 27-39, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30979388

RESUMO

The myoanatomy of adult phoronids has never been comprehensively studied by fluorescent staining and confocal laser scanning microscopy. Because the organization of the musculature may provide insight into phoronid biology and phylogeny, phoronid myoanatomy warrants detailed investigation. The current study provides the first description based on the use of modern methods of the musculature of the very small phoronid Phoronis ovalis. The musculature of the lophophore base includes radial, longitudinal, and circular muscles; pharynx dilators; and paired lateroabfrontal muscles. The musculature of the anterior part of the body is formed by outer-circular, middle-diagonal, and inner-longitudinal muscles; because all of the cells in these muscles contact the basal lamina, the musculature in the anterior part of the body forms a single layer. In the posterior part of the body, diagonal muscles are absent, and the longitudinal musculature is represented by small, thin bundles. In the terminal end of the body, there is an inversion of circular and longitudinal muscles. The organization of the musculature in the lophophore base and anterior part of the body suggests that the lophophore can move in different directions in order to capture food from local water currents. The organization of the musculature of the terminal end would enable this part of the body to be used for digging into the substratum. The four-partitioned ground plan of the lophophoral musculature in P. ovalis and in bryozoans from all three main groups indicates the homology of the lophophore and the monophyly of the lophophorates as a united clade that includes three phyla: Phoronida, Bryozoa, and Brachiopoda. Some similarities in the organization of the lophophoral musculature, however, may reflect the similarities in the sessile life styles and feeding behaviors of P. ovalis and bryozoans.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/classificação , Músculos/anatomia & histologia , Filogenia , Animais , Invertebrados/genética
9.
Biol Bull ; 237(3): 270-282, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31922911

RESUMO

Confocal laser scanning microscopy was used to study the myoanatomy of the lophophore of three phoronids with different types of lophophore: Phoronis ijimai, Phoronis australis, and Phoronopsis harmeri. A four-part ground plan of the lophophoral musculature was detected in all three species and was previously reported for Phoronis ovalis. The ground plan includes (i) a circular muscle, (ii) longitudinal muscles of the tentacular lamina, (iii) groups of paired distal muscles of the tentacular lamina, and (iv) frontal and abfrontal muscles of the tentacles. In P. australis, the tentacular lamina contains strong abfrontal and numerous frontal muscles. Phoronis harmeri has an inner circular muscle and arch-like muscles. Among all studied phoronids, the four-part ground plan of the lophophoral musculature is least complex in P. ijimai, which has a horseshoe-shaped lophophore. The results suggest two possible scenarios by which the morphology of the phoronid lophophore has transformed over evolutionary time. According to the first scenario, the morphology of the ancestral horseshoe-shaped lophophore became more complicated in the case of most phoronids but became simplified in the case of P. ovalis and bryozoans. According to the second scenario, the lophophore gradually transformed from a simple oval shape to a horseshoe shape and then to a spiral shape. The four-part ground plan of the lophophoral musculature is also present in bryozoans, which is consistent with the view that the lophophorates are monophyletic.


Assuntos
Briozoários , Aranhas , Animais , Invertebrados , Músculos
10.
Front Zool ; 15: 48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524485

RESUMO

INTRODUCTION: Among bryozoans, cyclostome anatomy is the least studied by modern methods. New data on the nervous system fill the gap in our knowledge and make morphological analysis much more fruitful to resolve some questions of bryozoan evolution and phylogeny. RESULTS: The nervous system of cyclostome Crisia eburnea was studied by transmission electron microscopy and confocal laser scanning microscopy. The cerebral ganglion has an upper concavity and a small inner cavity filled with cilia and microvilli, thus exhibiting features of neuroepithelium. The cerebral ganglion is associated with the circumoral nerve ring, the circumpharyngeal nerve ring, and the outer nerve ring. Each tentacle has six longitudinal neurite bundles. The body wall is innervated by thick paired longitudinal nerves. Circular nerves are associated with atrial sphincter. A membranous sac, cardia, and caecum all have nervous plexus. CONCLUSION: The nervous system of the cyclostome C. eburnea combines phylactolaemate and gymnolaemate features. Innervation of tentacles by six neurite bundles is similar of that in Phylactolaemata. The presence of circumpharyngeal nerve ring and outer nerve ring is characteristic of both, Cyclostomata and Gymnolaemata. The structure of the cerebral ganglion may be regarded as a result of transformation of hypothetical ancestral neuroepithelium. Primitive cerebral ganglion and combination of nerve plexus and cords in the nervous system of C. eburnea allows to suggest that the nerve system topography of C. eburnea may represent an ancestral state of nervous system organization in Bryozoa. Several scenarios describing evolution of the cerebral ganglion in different bryozoan groups are proposed.

11.
J Morphol ; 279(11): 1579-1589, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30350319

RESUMO

Details of spermatogenesis and sperm organization are often useful for reconstructing the phylogeny of closely related groups of invertebrates. Development in general and gametogenesis in particular usually differ in shallow water and deep-sea invertebrates. Here, the spermatogenesis and ultrastructure of sperm were studied in the deep-sea brachiopod Pelagodiscus atlanticus. The testes of P. atlanticus are voluminous sacs located along the lateral sides of the body. Germ cells develop around the blood capillaries, contact the basal lamina, and contain germ plasm, numerous mitochondria, Golgi apparatus, lipid droplets, and centrioles of the rudimentary cilium. During spermatogenesis, several proacrosomal vesicles appear at the posterior pole of the cell; these vesicles then fuse and migrate to the anterior pole. The spermatozoon has a head with an acrosome, nucleus, eight mitochondria, proximal and distal centrioles orthogonally arranged, and a long tail. Comparative analysis suggests that the spermatozoon of P. atlanticus can be considered the most ancestral among all brachiopods. Such an organization indicates that fertilization is external in this deep-sea species. Spermatozoa of other brachiopods should be regarded as derived from this ancestral type. The transformation of brachiopod spermatozoa might have occurred in three different ways that correspond to the three main clades of recent brachiopods: Linguliformea, Craniiformea, and Rhynchonelliformea.


Assuntos
Invertebrados/classificação , Invertebrados/fisiologia , Filogenia , Espermatogênese , Espermatozoides/ultraestrutura , Animais , Masculino , Modelos Biológicos , Espermatogônias/citologia , Espermatogônias/ultraestrutura , Espermatozoides/citologia
12.
J Morphol ; 279(2): 199-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29076541

RESUMO

The study of gametogenesis is useful for phylogenetic analysis and can also provide insight into the physiology and biology of species. This report describes oogenesis in the Phoronis embryolabi, a newly described species, which has an unusual type of development, that is, a viviparity of larvae. Phoronid oogonia are described here for the first time. Yolk formation is autoheterosynthetic. Heterosynthesis occurs in the peripheral cytoplasm via fusion of endocytosic vesicles. Simultaneously, the yolk is formed autosynthetically by rough endoplasmic reticulum in the central cytoplasm. Each developing oocyte is surrounded by the follicle of vasoperitoneal cells, whose cytoplasm is filled with glycogen particles and various inclusions. Cytoplasmic bridges connect developing oocytes and vasoperitoneal cells. These bridges and the presence of the numerous glycogen particles in the vasoperitoneal cells suggest that nutrients are transported from the follicle to oocytes. Phoronis embryolabi is just the second phoronid species in which the ultrastructure of oogenesis has been studied, and I discuss the data obtained comparing them with those in Phoronopsis harmeri. Finally, I discuss the distribution of reproductive patterns across both, molecular and morphological phylogenetic trees in Phoronida proving that parental care has evolved independently several times in this phylum.


Assuntos
Invertebrados/fisiologia , Oogênese/fisiologia , Animais , Feminino , Invertebrados/citologia , Oócitos/citologia , Oócitos/ultraestrutura , Oogônios/citologia , Oogônios/ultraestrutura , Vitelogênese
13.
J Eukaryot Microbiol ; 65(3): 427-431, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29171125

RESUMO

Microsporidia-like spores (2.0-3.0 × 1.3-1.5 µm) were discovered upon examination of histological sections taken from Phoronis embryolabi Temereva, Chichvarkhin 2017 found inhabiting burrows of shrimps Nihonotrypeae japonica (Decapoda, Callianassidae) from the Sea of Japan, Russia. Ultrastructural examination of spores revealed one nucleus and a uniform polar filament of 7-11 coils. Representatives of the phylum Phoronida have never been recorded as hosts of microsporidia. Parasites developed in vasoperitoneal tissue and caused formation of multinucleate syncytia. Basing on unique host and fine morphology, we assign the novel finding to Microsporidium phoronidi n. sp. and place provisionally in the collective genus Microsporidium.


Assuntos
Decápodes/parasitologia , Invertebrados/microbiologia , Microsporídios não Classificados/classificação , Microsporídios não Classificados/isolamento & purificação , Esporos Fúngicos/classificação , Animais , Microscopia Eletrônica de Transmissão , Filogenia , Federação Russa
14.
Sci Rep ; 7(1): 14440, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089576

RESUMO

The validity of the Lophophorata as a monophyletic group remains controversial. New data on the innervation of the lophophore, which is a unique feature of the lophophorates, may help clarify the status of the Lophophorata and provide new information on the early evolution of the group. In this paper, the organization of the nervous system of the lophophore is described in adults of the minute phoronid Phoronis ovalis. The lophophore nervous system includes a dorsal ganglion, a tentacular nerve ring, an inner ganglion, an inner nerve ring, and six nerves in each tentacle. The inner ganglion and inner nerve ring, which is associated with sensory cells, are described for the first time in adult phoronids. The general plan of the nervous system of the lophophore and tentacles is similar in P. ovalis and bryozoans. These new results suggest the presence of two nerve centers and two nerve rings in the last common ancestor of phoronids and bryozoans. During evolution, bryozoans may have lost the outer nerve center and outer nerve ring, whereas phoronids may have lost the inner nerve center and inner nerve ring. These morphological results evidence the lophophorates are monophyletic.


Assuntos
Poliquetos/anatomia & histologia , Poliquetos/fisiologia , Animais , Briozoários , Invertebrados/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Tecido Nervoso , Sistema Nervoso , Fenômenos Fisiológicos do Sistema Nervoso , Filogenia
15.
Evol Dev ; 19(4-5): 171-189, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28869351

RESUMO

Nervous system organization differs greatly in larvae and adults of many species, but has nevertheless been traditionally used for phylogenetic studies. In phoronids, the organization of the larval nervous system depends on the type of development. With the goal of understanding the ground plan of the nervous system in phoronid larvae, the development and organization of the larval nervous system were studied in a viviparous phoronid species. The ground plan of the phoronid larval nervous system includes an apical organ, a continuous nerve tract under the preoral and postoral ciliated bands, and two lateral nerves extending between the apical organ and the nerve tract. A bilobed larva with such an organization of the nervous system is suggested to be the primary larva of the taxonomic group Brachiozoa, which includes the phyla Brachiopoda and Phoronida. The ground plan of the nervous system of phoronid larvae is similar to that of the early larvae of annelids and of some deuterostomians. The protostome- and deuterostome-like features, which are characteristic of many organ systems in phoronids, were probably inherited by phoronids from the last common bilaterian ancestor. The information provided here on the ground plan of the larval nervous system should be useful for future analyses of phoronid phylogeny and evolution.


Assuntos
Invertebrados/ultraestrutura , Animais , Invertebrados/classificação , Invertebrados/crescimento & desenvolvimento , Invertebrados/fisiologia , Larva/fisiologia , Larva/ultraestrutura , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/ultraestrutura , Filogenia
16.
BMC Evol Biol ; 17(1): 172, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28760135

RESUMO

BACKGROUND: The nervous system in brachiopods has seldom been studied with modern methods. An understanding of lophophore innervation in adult brachiopods is useful for comparing the innervation of the same lophophore type among different brachiopods and can also help answer questions about the monophyly of the lophophorates. Although some brachiopods are studied with modern methods, rhynchonelliform brachiopods still require investigation. The current study used transmission electron microscopy, immunocytochemistry, and confocal laser scanning microscopy to investigate the nerve system of the lophophore and tentacles in the rhynchonelliform Hemithiris psittacea. RESULTS: Four longitudinal nerves pass along each brachium of the lophophore: the main, accessory, second accessory, and lower. The main brachial nerve extends at the base of the dorsal side of the brachial fold and gives rise to the cross nerves, passing through the extracellular matrix to the tentacles. Cross nerves skirt the accessory brachial nerve, branch, and penetrate into adjacent outer and inner tentacles, where they are referred to as the frontal tentacular nerves. The second accessory nerve passes along the base of the inner tentacles. This nerve consists of Ʊ-like parts, which repetitively skirt the frontal and lateral sides of the inner tentacle and the frontal sides of the outer tentacles. The second accessory nerve gives rise to the latero-frontal nerves of the inner and outer tentacles. The abfrontal nerves of the inner tentacles also originate from the second accessory nerve, whereas the abfrontal nerves of the outer tentacles originate from the lower brachial nerve. The lower brachial nerve extends along the outer side of the lophophore brachia and gives rise to the intertentacular nerves, which form a T-like branch and penetrate the adjacent outer tentacles where they are referred to as abfrontal nerves. The paired outer radial nerves start from the lower brachial nerve, extend into the second accessory nerve, and give rise to the lateroabfrontal tentacular nerves of the outer tentacles. CONCLUSIONS: The innervation of the lophophore in the rhynchonelliform Hemithiris psittacea differs from that in the inarticulate Lingula anatina in several ways. The accessory brachial nerve does not participate in the innervation of the tentacles in H. psittacea as it does in L. anatina. The second accessory nerve is present in H. psittacea but not in L. anatina. There are six tentacular nerves in the outer tentacles of H. psittacea but only four in all other brachiopods studied to date. The reduced contribution of the accessory brachial nerve to tentacle innervation may reflect the general pattern of reduction of the inner lophophoral nerve in both phoronids and brachiopods. Bryozoan lophophores, in contrast, have a weakened outer nerve and a strengthened inner nerve. Our results suggest that the ancestral lophophore of all lophophorates had a simple shape but many nerve elements.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Sistema Nervoso/anatomia & histologia , Animais , Briozoários/anatomia & histologia , Briozoários/fisiologia , Invertebrados/ultraestrutura , Microscopia Eletrônica de Transmissão , Sistema Nervoso/ultraestrutura
17.
J Morphol ; 278(7): 997-1011, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28466496

RESUMO

The organization of the coelomic system and the ultrastructure of the coelomic lining are used in phylogenetic analysis to establish the relationships between major taxa. Investigation of the anatomy and ultrastructure of the coelomic system in brachiopods, which are poorly studied, can provide answers to fundamental questions about the evolution of the coelom in coelomic bilaterians. In the current study, the organization of the coelom of the lophophore in the brachiopod Lingula anatina was investigated using semithin sectioning, 3D reconstruction, and transmission electron microscopy. The lophophore of L. anatina contains two main compartments: the preoral coelom and the lophophoral coelom. The lining of the preoral coelom consists of ciliated cells. The lophophoral coelom is subdivided into paired coelomic sacs: the large and small sinuses (= canals). The lining of the lophophoral coelom varies in structure and includes monociliate myoepithelium, alternating epithelial and myoepithelial cells, specialized peritoneum and muscle cells, and podocyte-like cells. Connections between cells of the coelomic lining are provided by adherens junctions, tight-like junctions, septate junctions, adhesive junctions, and direct cytoplasmic bridges. The structure of the coelomic lining varies greatly in both of the main stems of the Bilateria, that is, in the Protostomia and Deuterostomia. Because of this great variety, the structure of the coelomic lining cannot by itself be used in phylogenetic analysis. At the same time, the ciliated myoepithelium can be considered as the ancestral type of coelomic lining. The many different kinds of junctions between cells of the coelomic lining may help coordinate the functioning of epithelial cells and muscle cells.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/ultraestrutura , Animais , Evolução Biológica , Esôfago/anatomia & histologia , Esôfago/ultraestrutura , Junções Intercelulares/ultraestrutura , Invertebrados/fisiologia , Células Musculares/ultraestrutura
18.
BMC Evol Biol ; 16: 181, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600336

RESUMO

BACKGROUND: The Bryozoa (=Ectoprocta) is a large group of bilaterians that exhibit great variability in the innervation of tentacles and in the organization of the cerebral ganglion. Investigations of bryozoans from different groups may contribute to the reconstruction of the bryozoan nervous system bauplan. A detailed investigation of the polypide nervous system of the ctenostome bryozoan Amathia gracilis is reported here. RESULTS: The cerebral ganglion displays prominent zonality and has at least three zones: proximal, central, and distal. The proximal zone is the most developed and contains two large perikarya giving rise to the tentacle sheath nerves. The neuroepithelial organization of the cerebral ganglion is revealed. The tiny lumen of the cerebral ganglion is represented by narrow spaces between the apical projections of the perikarya of the central zone. The cerebral ganglion gives rise to five groups of main neurite bundles of the lophophore and the tentacle sheath: the circum-oral nerve ring, the lophophoral dorso-lateral nerves, the pharyngeal and visceral neurite bundles, the outer nerve ring, and the tentacle sheath nerves. Serotonin-like immunoreactive nerve system of polypide includes eight large perikarya located between tentacles bases. There are two analmost and six oralmost perikarya with prominent serotonergic "gap" between them. Based on the characteristics of their innervations, the tentacles can be subdivided into two groups: four that are near the anus and six that are near the mouth. Two longitudinal neurite bundles - medio-frontal and abfrontal - extend along each tentacle. CONCLUSION: The zonality of the cerebral ganglion, the presence of three commissures, and location of the main nerves emanating from each zone might have caused by directive innervation of the various parts of the body: the tentacles sheath, the lophohpore, and the digestive tract. Two alternative scenarios of bryozoan lophophore evolution are discussed. The arrangement of large serotonin-like immunoreactive perikarya differs from the pattern previously described in ctenostome bryozoans. In accordance with its position relative to the same organs (tentacles, anus, and mouth), the lophophore outer nerve ring corresponds to the brachiopod lower brachial nerve and to the phoronid tentacular nerve ring. The presence of the outer nerve ring makes the lophophore innervation within the group (clade) of lophophorates similar and provides additional morphological evidence of the lophophore homology and monophyly of the lophophorates.


Assuntos
Briozoários/genética , Briozoários/ultraestrutura , Animais , Evolução Biológica , Briozoários/classificação , Cistos Glanglionares/ultraestrutura , Sistema Nervoso/ultraestrutura , Serotonina
19.
BMC Evol Biol ; 15: 229, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26489660

RESUMO

BACKGROUND: Phoronids undergo a remarkable metamorphosis, in which some parts of the larval body are consumed by the juvenile and the body plan completely changes. According to the only previous hypothesis concerning the evolution of the phoronid body plan, a hypothetical ancestor of phoronids inhabited a U-shaped burrow in soft sediment, where it drew the anterior and posterior parts of the body together and eventually fused them. In the current study, we investigated the metamorphosis of Phoronopsis harmeri with light, electron, and laser confocal microscopy. RESULTS: During metamorphosis, the larval hood is engulfed by the juvenile; the epidermis of the postroral ciliated band is squeezed from the tentacular epidermis and then engulfed; the larval telotroch undergoes cell death and disappears; and the juvenile body forms from the metasomal sack of the larva. The dorsal side of the larva becomes very short, whereas the ventral side becomes very long. The terminal portion of the juvenile body is the ampulla, which can repeatedly increase and decrease in diameter. This flexibility of the ampulla enables the juvenile to dig into the sediment. The large blastocoel of the larval collar gives rise to the lophophoral blood vessels of the juvenile. The dorsal blood vessel of the larva becomes the definitive median blood vessel. The juvenile inherits the larval protocoel, mesocoel, and metacoel. Late in metamorphosis, however, the protocoel loses its epithelial structure: the desmosomes between cells and the basal lamina under the cells disappear. This loss may reflect a reduction of the protocoel, which is a characteristic of some recent phoronids. CONCLUSIONS: Based on our investigation of P. harmeri metamorphosis, we hypothesize that the phoronid ancestor was worm-like animal that possessed preoral, tentacular, and trunk coeloms. It lived on the soft sediment and collected food with its tentacles. When threatened, this worm-like ancestor buried itself in the soft sediment by means of the ventral protrusion into which the loop of the intestine and the blood vessels were drawn. We propose that this behavior gave rise to the body plan of all recent phoronids. The evolution of phoronid life cycle seems having more in common with"intercalation" than "terminal addition" theories.


Assuntos
Invertebrados/anatomia & histologia , Animais , Evolução Biológica , Invertebrados/citologia , Invertebrados/crescimento & desenvolvimento , Larva/anatomia & histologia , Estágios do Ciclo de Vida , Microscopia Confocal , Plâncton/citologia
20.
PLoS One ; 10(4): e0123040, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901745

RESUMO

Evolutionary relationships among members of the Lophophorata remain unclear. Traditionally, the Lophophorata included three phyla: Brachiopoda, Bryozoa or Ectoprocta, and Phoronida. All species in these phyla have a lophophore, which is regarded as a homologous structure of the lophophorates. Because the organization of the nervous system has been traditionally used to establish relationships among groups of animals, information on the organization of the nervous system in the lophophore of phoronids, brachiopods, and bryozoans may help clarify relationships among the lophophorates. In the current study, the innervation of the lophophore of the inarticulate brachiopod Lingula anatina is investigated by modern methods. The lophophore of L. anatina contains three brachial nerves: the main, accessory, and lower brachial nerves. The main brachial nerve is located at the base of the dorsal side of the brachial fold and gives rise to the cross neurite bundles, which pass through the connective tissue and connect the main and accessory brachial nerves. Nerves emanating from the accessory brachial nerve account for most of the tentacle innervation and comprise the frontal, latero-frontal, and latero-abfrontal neurite bundles. The lower brachial nerve gives rise to the abfrontal neurite bundles of the outer tentacles. Comparative analysis revealed the presence of many similar features in the organization of the lophophore nervous system in phoronids, brachiopods, and bryozoans. The main brachial nerve of L. anatina is similar to the dorsal ganglion of phoronids and the cerebral ganglion of bryozoans. The accessory brachial nerve of L. anatina is similar to the minor nerve ring of phoronids and the circumoral nerve ring of bryozoans. All lophophorates have intertentacular neurite bundles, which innervate adjacent tentacles. The presence of similar nerve elements in the lophophore of phoronids, brachiopods, and bryozoans supports the homology of the lophophore and the monophyly of the lophophorates.


Assuntos
Plexo Braquial/fisiologia , Invertebrados/classificação , Invertebrados/fisiologia , Animais , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...